Odd perfect numbers have at least nine distinct prime factors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odd perfect numbers have at least nine distinct prime factors

An odd perfect number, N , is shown to have at least nine distinct prime factors. If 3 N then N must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.

متن کامل

Odd Perfect Numbers Have a Prime Factor Exceeding

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

Odd perfect numbers have a prime factor exceeding 108

Jenkins in 2003 showed that every odd perfect number is divisible by a prime exceeding 107. Using the properties of cyclotomic polynomials, we improve this result to show that every perfect number is divisible by a prime exceeding 108.

متن کامل

Odd Perfect Numbers Have a Prime Factor Exceeding 10 7 Paul

It is proved that every odd perfect number is divisible by a prime greater than 107.

متن کامل

Odd Perfect numbers

It is not known whether or not odd perfect numbers can exist. However it is known that there is no such number below 10, (see Brent [1]). Moreover it has been proved by Hagis [4] and Chein [2] independently that an odd perfect number must have at least 8 prime factors. In fact results of this latter type can in principle be obtained solely by calculation, in view of the result of Pomerance [6] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2007

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-07-01990-4